Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 152
1.
Drug Discov Today ; 29(1): 103852, 2024 Jan.
Article En | MEDLINE | ID: mdl-38070702

Oral carcinoma is the sixth most common cancer globally, with one death occurring every hour. Focal adhesion kinase (FAK) is an intercellular protein tyrosine kinase, a key indicator of the development of oral cancer. FAK overexpression leads to the initiation and significant progression of metastasis in head and neck cancers, indicating its vital role in cancer progression and potential as a biomarker for early oral malignant transformation. The present review elaborates on FAK's function in oral malignancies since it could serve as a biomarker of the initial stages of oral malignant transformation and a possible predictive factor for risk assessment.


Focal Adhesions , Mouth Neoplasms , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , Focal Adhesions/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Biomarkers
2.
Life Sci ; 335: 122255, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37967792

BACKGROUND: Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES: The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS: In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS: GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and ß1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE: Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.


Lung Neoplasms , Animals , Mice , Lung Neoplasms/pathology , Focal Adhesions/metabolism , Focal Adhesions/pathology , Proteomics , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Neoplasm Metastasis/pathology
3.
Environ Toxicol ; 38(2): 278-288, 2023 Feb.
Article En | MEDLINE | ID: mdl-36288102

Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, ß-ZEL, α-ZEL, and ß-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.


Focal Adhesions , Testis , Zearalenone , Animals , Male , Rats , Focal Adhesions/drug effects , Focal Adhesions/pathology , Leydig Cells/metabolism , Mycotoxins/adverse effects , Mycotoxins/toxicity , Testis/drug effects , Testis/pathology , Zearalenone/adverse effects , Zearalenone/toxicity
4.
Int J Biol Sci ; 18(13): 4932-4949, 2022.
Article En | MEDLINE | ID: mdl-35982908

Little is known about the oncogenic role or biological function of copine Ⅷ (CPNE8) in gastric cancer (GC). Based on TCGA database, we screened for CPNE8 and analyzed the expression of CPNE8 in GC. The correlations between CPNE8 and clinical features were analyzed using TCGA and GEO databases. The prognostic value of CPNE8 was assessed using Cox analysis and Kaplan-Meier curves. The results showed that increased expression of CPNE8 was positively correlated with metastasis and can be considered an independent prognostic risk factor for poor survival. We found that CPNE8 can promote cell proliferation, migration, and invasiveness in GC using in vitro and in vivo experiments. Our study demonstrated that CPNE8 promotes tumor progression via regulation of focal adhesion, and these effects can be rescued by focal adhesion kinase (FAK) inhibitor GSK2256098 or knockdown of FAK. In addition, CPNE8 was correlated significantly with the infiltration of cancer-associated fibroblasts and immune cells, as demonstrated by various algorithms, and high CPNE8 expression predicted poor efficacy of immune checkpoint therapy. Our findings suggest that CPNE8 modulates focal adhesion and tumor microenvironment to promote GC progression and invasiveness and could serve as a novel prognostic biomarker in GC.


Carrier Proteins , Stomach Neoplasms , Tumor Microenvironment , Carrier Proteins/genetics , Cell Movement , Focal Adhesion Kinase 1/metabolism , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Neoplasm Invasiveness/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Microenvironment/genetics
5.
Acta Neuropathol ; 144(3): 521-536, 2022 09.
Article En | MEDLINE | ID: mdl-35857122

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.


Focal Adhesion Kinase 1/metabolism , Huntington Disease , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/pathology , Mice , Neurites/pathology , Neurons/pathology
6.
J Immunol Res ; 2022: 1590717, 2022.
Article En | MEDLINE | ID: mdl-35769513

Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy with poor prognosis worldwide. Emerging evidences demonstrated critical roles of lipid de novo synthesis in HCC progression, yet its regulatory mechanisms are not fully understood. Herein, we found that tuftelin 1 (TUFT1), an acidic phosphorylated glycoprotein with secretory capacity, was significantly upregulated in HCC and had an excellent correlation with patient survival and malignancy features. Through database mining and experimental validation, we found that TUFT1 was associated with fatty acid metabolism and promoted lipid accumulation in HCC cells. Further, we found that TUFT1 can interact with CREB1, a transcription factor for hepatic lipid metabolism, and regulate its activity and the transcriptions of key enzymes for lipogenesis. TUFT1 promoted HCC cell proliferation significantly, which was partially reversed by treatment of an inhibitor of CREB1, KG-501. Moreover, TUFT1 promoted the capacity of HCC cell invasion in vitro, which was likely mediated by its association with zyxin, a zinc-binding phosphoprotein responsible for the formation of fully mature focal adhesions on extracellular matrix. We found that TUFT1 can interact with ZYX and inhibit its expression and recruitments to focal complexes in HCC cells. Collectively, our study uncovered new regulatory mechanisms of TUFT1-mediated lipogenesis, cell proliferation, and invasion.


Carcinoma, Hepatocellular , Dental Enamel Proteins , Focal Adhesions , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Dental Enamel Proteins/metabolism , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Lipogenesis , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
7.
Adv Sci (Weinh) ; 9(9): e2103249, 2022 03.
Article En | MEDLINE | ID: mdl-35098698

Breast cancer is the most prevalent cancer and a major cause of death in women worldwide. Although early diagnosis and therapeutic intervention significantly improve patient survival rate, metastasis still accounts for most deaths. Here it is reported that, in a cohort of more than 2000 patients with breast cancer, overexpression of PI3KC2α occurs in 52% of cases and correlates with high tumor grade as well as increased probability of distant metastatic events, irrespective of the subtype. Mechanistically, it is demonstrated that PI3KC2α synthetizes a pool of PI(3,4)P2 at focal adhesions that lowers their stability and directs breast cancer cell migration, invasion, and metastasis. PI(3,4)P2 locally produced by PI3KC2α at focal adhesions recruits the Ras GTPase activating protein 3 (RASA3), which inactivates R-RAS, leading to increased focal adhesion turnover, migration, and invasion both in vitro and in vivo. Proof-of-concept is eventually provided that inhibiting PI3KC2α or lowering RASA3 activity at focal adhesions significantly reduces the metastatic burden in PI3KC2α-overexpressing breast cancer, thereby suggesting a novel strategy for anti-breast cancer therapy.


Breast Neoplasms , Cell Adhesion/physiology , Female , Focal Adhesions/metabolism , Focal Adhesions/pathology , GTPase-Activating Proteins/metabolism , Humans , Phosphatidylinositols/metabolism
8.
Mol Ther ; 30(2): 688-702, 2022 02 02.
Article En | MEDLINE | ID: mdl-34371180

Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.


Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/pathology , Gene Expression Regulation, Neoplastic , Humans , Integrin beta Chains , Integrins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
9.
Pigment Cell Melanoma Res ; 35(1): 52-65, 2022 01.
Article En | MEDLINE | ID: mdl-34468072

Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators that have been implicated in driving metastasis and progression in many cancers, mainly through their transcriptional regulation of downstream targets. Although YAP and TAZ have shown redundancy in many contexts, it is still unknown whether or not this is true in melanoma. Here, we show that while both YAP and TAZ are expressed in a panel of melanoma cell lines, depletion of YAP results in decreased cell numbers, focal adhesions, and the ability to invade matrigel. Using non-biased RNA-sequencing analysis, we find that melanoma cells depleted of YAP, TAZ, or YAP/TAZ exhibit drastically different transcriptomes. We further uncover the ARP2/3 subunit ARPC5 as a specific target of YAP but not TAZ and that ARPC5 is essential for YAP-dependent maintenance of melanoma cell focal adhesion numbers. Our findings suggest that in melanoma, YAP drives melanoma progression, survival, and invasion.


Actin-Related Protein 2-3 Complex/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , YAP-Signaling Proteins/metabolism , Actin-Related Protein 2-3 Complex/genetics , Cell Adhesion , Cell Line, Tumor , Cell Movement , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/pathology , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/pathology , Neoplasm Invasiveness , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Transcriptome , YAP-Signaling Proteins/genetics
10.
PLoS One ; 16(12): e0261345, 2021.
Article En | MEDLINE | ID: mdl-34932568

Epithelial-mesenchymal transition (EMT) of tubular epithelial cells is a hallmark of renal tubulointerstitial fibrosis and is associated with chronic renal injury as well as acute renal injury. As one of the incidences and risk factors for acute renal injury, increasing the osmolality in the proximal tubular fluid by administration of intravenous mannitol has been reported, but the detailed mechanisms remain unclear. Hyperosmotic conditions caused by mannitol in the tubular tissue may generate not only osmotic but also mechanical stresses, which are known to be able to induce EMT in epithelial cells, thereby contributing to renal injury. Herein, we investigate the effect of hyperosmolarity on EMT in tubular epithelial cells. Normal rat kidney (NRK)-52E cells were exposed to mannitol-induced hyperosmotic stress. Consequently, the hyperosmotic stress led to a reduced expression of the epithelial marker E-cadherin and an enhanced expression of the mesenchymal marker, α-smooth muscle actin (α-SMA), which indicates an initiation of EMT in NKR-52E cells. The hyperosmotic condition also induced time-dependent disassembly and rearrangements of focal adhesions (FAs) concomitant with changes in actin cytoskeleton. Moreover, prevention of FAs rearrangements by cotreatment with Y-27632, a Rho-associated protein kinase inhibitor, could abolish the effects of hyperosmotic mannitol treatment, thus attenuating the expression of α-SMA to the level in nontreated cells. These results suggest that hyperosmotic stress may induce EMT through FAs rearrangement in proximal tubular epithelial cells.


Epithelial Cells/pathology , Epithelial-Mesenchymal Transition , Fibrosis/pathology , Focal Adhesions/pathology , Kidney Tubules/pathology , Osmotic Pressure , Stress, Physiological , Animals , Epithelial Cells/metabolism , Fibrosis/metabolism , Focal Adhesions/metabolism , Kidney Tubules/metabolism , Rats
11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article En | MEDLINE | ID: mdl-34588305

Increased stiffness of solid tissues has long been recognized as a diagnostic feature of several pathologies, most notably malignant diseases. In fact, it is now well established that elevated tissue rigidity enhances disease progression and aggressiveness and is associated with a poor prognosis in patients as documented, for instance, for lung fibrosis or the highly desmoplastic cancer of the pancreas. The underlying mechanisms of the interplay between physical properties and cellular behavior are, however, not very well understood. Here, we have found that switching culture conditions from soft to stiff substrates is sufficient to evoke (macro) autophagy in various fibroblast types. Mechanistically, this is brought about by stiffness-sensing through an Integrin αV-focal adhesion kinase module resulting in sequestration and posttranslational stabilization of the metabolic master regulator AMPKα at focal adhesions, leading to the subsequent induction of autophagy. Importantly, stiffness-induced autophagy in stromal cells such as fibroblasts and stellate cells critically supports growth of adjacent cancer cells in vitro and in vivo. This process is Integrin αV dependent, opening possibilities for targeting tumor-stroma crosstalk. Our data thus reveal that the mere change in mechanical tissue properties is sufficient to metabolically reprogram stromal cell populations, generating a tumor-supportive metabolic niche.


Autophagy/physiology , Extracellular Matrix/pathology , Animals , Cell Line , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/metabolism , Fibrosis/pathology , Focal Adhesions/metabolism , Focal Adhesions/pathology , Integrin alphaV/metabolism , Mice , NIH 3T3 Cells , Neoplasms/metabolism , Neoplasms/pathology , Pancreas/metabolism , Pancreas/pathology , Stromal Cells/metabolism
12.
Toxicol Appl Pharmacol ; 429: 115683, 2021 10 15.
Article En | MEDLINE | ID: mdl-34411582

Unfractionated heparin (UFH) is a widely used anticoagulant that possess numerous properties including anti-inflammatory, anti-viral, anti-angiogenesis, and anti-metastatic effects. The effect of this drug was evaluated on the podocyte, an important actor of the glomerular filtration. Using a functional approach, we demonstrate that heparin treatment leads to a functional podocyte perturbation characterized by the increase of podocyte monolayer permeability. This effect is enhanced with time of exposure. Proteomic study reveals that heparin down regulate focal adhesion and cytoskeletal protein expressions as well as the synthesis of glomerular basement membrane components. This study clearly demonstrates that UFH may affect podocyte function by altering cytoskeleton organization, cell-cell contacts and cell attachment.


Anticoagulants/toxicity , Heparin/toxicity , Podocytes/drug effects , Proteome/drug effects , Proteomics , Cell Line , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/pathology , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Focal Adhesions/pathology , Glomerular Filtration Rate/drug effects , Humans , Permeability , Phenotype , Podocytes/metabolism , Podocytes/pathology , Time Factors
13.
JCI Insight ; 6(19)2021 10 08.
Article En | MEDLINE | ID: mdl-34383712

Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum-treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum-treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.


Cardiomyopathy, Dilated/genetics , Extracellular Matrix/drug effects , Focal Adhesions/drug effects , Myocytes, Cardiac/drug effects , Transcriptome/drug effects , Ventricular Remodeling/drug effects , Adolescent , Animals , Animals, Newborn , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Child , Child, Preschool , Endopeptidase K/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/pharmacology , Male , Microscopy, Atomic Force , Midkine/metabolism , Midkine/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA-Seq , Rats , Ribonucleases/pharmacology , Secretome , Ventricular Remodeling/genetics
14.
Nat Cell Biol ; 23(7): 758-770, 2021 07.
Article En | MEDLINE | ID: mdl-34226698

The YAP/TAZ transcriptional programme is not only a well-established driver of cancer progression and metastasis but also an important stimulator of tissue regeneration. Here we identified Cerebral cavernous malformations 3 (CCM3) as a regulator of mechanical cue-driven YAP/TAZ signalling, controlling both tumour progression and stem cell differentiation. We demonstrate that CCM3 localizes to focal adhesion sites in cancer-associated fibroblasts, where it regulates mechanotransduction and YAP/TAZ activation. Mechanistically, CCM3 and focal adhesion kinase (FAK) mutually compete for binding to paxillin to fine-tune FAK/Src/paxillin-driven mechanotransduction and YAP/TAZ activation. In mouse models of breast cancer, specific loss of CCM3 in cancer-associated fibroblasts leads to exacerbated tissue remodelling and force transmission to the matrix, resulting in reciprocal YAP/TAZ activation in the neighbouring tumour cells and dissemination of metastasis to distant organs. Similarly, CCM3 regulates the differentiation of mesenchymal stromal/stem cells. In conclusion, CCM3 is a gatekeeper in focal adhesions that controls mechanotransduction and YAP/TAZ signalling.


Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Focal Adhesions/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mechanotransduction, Cellular , Membrane Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Cell Communication , Cell Differentiation , Cell Line, Tumor , Female , Focal Adhesion Kinase 1/metabolism , Focal Adhesions/genetics , Focal Adhesions/pathology , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Paxillin/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/genetics , Stress, Mechanical , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , src-Family Kinases/metabolism
15.
Cells ; 10(5)2021 05 19.
Article En | MEDLINE | ID: mdl-34069353

Ca2+ signaling is ubiquitous in eukaryotic cells and modulates many cellular events including cell migration. Directional cell migration requires the polarization of both signaling and structural elements. This polarization is reflected in various Ca2+ signaling pathways that impinge on cell movement. In particular, store-operated Ca2+ entry (SOCE) plays important roles in regulating cell movement at both the front and rear of migrating cells. SOCE represents a predominant Ca2+ influx pathway in non-excitable cells, which are the primary migrating cells in multicellular organisms. In this review, we summarize the role of Ca2+ signaling in cell migration with a focus on SOCE and its diverse functions in migrating cells and cancer metastasis. SOCE has been implicated in regulating focal adhesion turnover in a polarized fashion and the mechanisms involved are beginning to be elucidated. However, SOCE is also involved is other aspects of cell migration with a less well-defined mechanistic understanding. Therefore, much remains to be learned regarding the role and regulation of SOCE in migrating cells.


Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Cell Movement , Neoplasms/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , ORAI1 Protein/metabolism
16.
Eur J Cancer ; 151: 94-105, 2021 07.
Article En | MEDLINE | ID: mdl-33975060

AIM: This study aimed to identify the functional genes and genetic variants associated with the prognosis of pancreatic ductal adenocarcinoma (PDAC) and reveal the mechanism underlying their prognostic roles. METHODS: First, we implement a two-stage exome-wide association study in a total of 1070 patients to identify the genetic variant correlated with PDAC prognosis. Then we performed fine mapping through bioinformatics analysis and dual-luciferase reporter assays to reveal the causal functional variant and prognostic gene. Next, we established the gene knockdown, knockout, and overexpression cell lines with small interfering RNA, CRISPR/Cas9, and lentivirus, respectively, and investigated the gene function on cell proliferation and migration in vivo and in vitro. Finally, we performed the RNA-seq to elucidate downstream genes and mechanisms altering PDAC prognosis. RESULTS: We identified the CAV1-CAV2 locus tagged by rs8940 was significantly associated with PDAC prognosis, and rs10249656 in the 3'untranslated region of CAV2 was the real functional variant, which upregulated CAV2 expression through abolishing miR-548s binding. We observed upregulated CAV2 in PDAC and the higher expression correlated with worse prognosis. Transient knockdown of CAV2 inhibited PDAC migration without affecting proliferation rate. Knockout of CAV2 suppressed PDAC progression and metastasis, whereas stable overexpression of CAV2 promoted. Overexpressed CAV2 promoted the PDAC progression and metastasis via perturbing genes in the focal adhesion (CCND1, IGTA1, and ZYX) and extracellular matrix organisation (PLOD2, CAST, and ITGA1) pathways mechanically. CONCLUSION: These findings shed light on an important role of CAV2 on PDAC progression and the prognostic impact of its genetic variation.


Carcinoma, Pancreatic Ductal/metabolism , Caveolin 2/metabolism , Cell Movement , Lung Neoplasms/metabolism , Pancreatic Neoplasms/metabolism , Polymorphism, Single Nucleotide , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Caveolin 2/genetics , Cell Line, Tumor , Disease Progression , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/pathology , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA-Seq , Signal Transduction , Exome Sequencing
17.
FASEB J ; 35(5): e21560, 2021 05.
Article En | MEDLINE | ID: mdl-33860543

Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.


Actin Cytoskeleton/metabolism , Diabetic Nephropathies/pathology , Filamins/metabolism , Focal Adhesions/pathology , Kidney Glomerulus/pathology , Podocytes/pathology , Stress, Mechanical , Adult , Aged , Aged, 80 and over , Animals , Case-Control Studies , Cell Adhesion , Cell Movement , Diabetic Nephropathies/metabolism , Focal Adhesions/metabolism , Humans , Kidney Glomerulus/metabolism , Mice , Middle Aged , Podocytes/metabolism , Retrospective Studies , Signal Transduction
18.
Sci Rep ; 11(1): 3329, 2021 02 08.
Article En | MEDLINE | ID: mdl-33558623

We have recently found that ß-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.


Cell Movement , Focal Adhesions/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Neoplasm Proteins/biosynthesis , Retroelements , Cell Line, Tumor , Focal Adhesions/genetics , Focal Adhesions/pathology , Humans , Melanoma/genetics , Melanoma/pathology , Neoplasm Invasiveness , Neoplasm Proteins/genetics
19.
Int J Biochem Cell Biol ; 131: 105903, 2021 02.
Article En | MEDLINE | ID: mdl-33309958

The Kank (kidney or KN motif and ankyrin repeat domain-containing) family of proteins has been described as essential for crosstalk between actin and microtubules. Kank1, 2, 3 and 4 arose by gene duplication and diversification and share conserved structural domains. KANK proteins are localised mainly to the plasma membrane in focal adhesions, indirectly affecting RhoA and Rac1 thus regulating actin cytoskeleton. In addition, Kank proteins are part of the cortical microtubule stabilisation complex regulating microtubules. Most of the data have been collected for Kank1 protein whose expression promotes apoptosis and cell-cycle arrest while Kank3 was identified as hypoxia-inducible proapoptotic target of p53. A discrepancy in Kanks role in regulation of cell migration and sensitivity to antitumour drugs has been observed in different cell models. Since expression of Kank1 and 3 correlate positively with tumour progression and patient outcome, at least in some tumour types, they are candidates for tumour suppressors.


Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins/genetics , Cytoskeletal Proteins/genetics , Focal Adhesions/drug effects , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Microtubules/drug effects , Microtubules/metabolism , Microtubules/ultrastructure , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Paclitaxel/therapeutic use , Protein Domains , Signal Transduction , Treatment Outcome , Vincristine/therapeutic use
20.
Cancer Res ; 81(4): 986-1000, 2021 02 15.
Article En | MEDLINE | ID: mdl-33310726

The ubiquitous second messenger Ca2+ has long been recognized as a key regulator in cell migration. Locally confined Ca2+, in particular, is essential for building front-to-rear Ca2+ gradient, which serves to maintain the morphologic polarity required in directionally migrating cells. However, little is known about the source of the Ca2+ and the mechanism by which they crosstalk between different signaling pathways in cancer cells. Here, we report that calcium release-activated calcium modulator 2 (ORAI2), a poorly characterized store-operated calcium (SOC) channel subunit, predominantly upregulated in the lymph node metastasis of gastric cancer, supports cell proliferation and migration. Clinical data reveal that a high frequency of ORAI2-positive cells in gastric cancer tissues significantly correlated with poor differentiation, invasion, lymph node metastasis, and worse prognosis. Gain- and loss-of-function showed that ORAI2 promotes cell motility, tumor formation, and metastasis in both gastric cancer cell lines and mice. Mechanistically, ORAI2 mediated SOC activity and regulated tumorigenic properties through the activation of the PI3K/Akt signaling pathways. Moreover, ORAI2 enhanced the metastatic ability of gastric cancer cells by inducing FAK-mediated MAPK/ERK activation and promoted focal adhesion disassembly at rear-edge of the cell. Collectively, our results demonstrate that ORAI2 is a novel gene that plays an important role in the tumorigenicity and metastasis of gastric cancer. SIGNIFICANCE: These findings describe the critical role of ORAI2 in gastric cancer cell migration and tumor metastasis and uncover the translational potential to advance drug discovery along the ORAI2 signaling pathway.


Adenocarcinoma/pathology , Carcinogenesis/genetics , Focal Adhesions/metabolism , ORAI2 Protein/physiology , Stomach Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Focal Adhesions/genetics , Focal Adhesions/pathology , Humans , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , ORAI2 Protein/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
...